Fast single-photon avalanche diode arrays for laser Raman spectroscopy.

نویسندگان

  • Jordana Blacksberg
  • Yuki Maruyama
  • Edoardo Charbon
  • George R Rossman
چکیده

We incorporate newly developed solid-state detector technology into time-resolved laser Raman spectroscopy, demonstrating the ability to distinguish spectra from Raman and fluorescence processes. As a proof of concept, we show fluorescence rejection on highly fluorescent mineral samples willemite and spodumene using a 128×128 single-photon avalanche diode (SPAD) array with a measured photon detection efficiency of 5%. The sensitivity achieved in this new instrument architecture is comparable to the sensitivity of a technically more complicated system using a traditional photocathode-based imager. By increasing the SPAD active area and improving coupling efficiency, we expect further improvements in sensitivity by over an order of magnitude. We discuss the relevance of these results to in situ planetary instruments, where size, weight, power, and radiation hardness are of prime concern. The potential large-scale manufacturability of silicon SPAD arrays makes them prime candidates for future portable and in situ Raman instruments spanning numerous applications where fluorescence interference is problematic.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Miniaturized time-resolved Raman spectrometer for planetary science based on a fast single photon avalanche diode detector array.

We present recent developments in time-resolved Raman spectroscopy instrumentation and measurement techniques for in situ planetary surface exploration, leading to improved performance and identification of minerals and organics. The time-resolved Raman spectrometer uses a 532 nm pulsed microchip laser source synchronized with a single photon avalanche diode array to achieve sub-nanosecond time...

متن کامل

A 1024 × 8, 700-ps Time-Gated SPAD Line Sensor for Planetary Surface Exploration With Laser Raman Spectroscopy and LIBS

A 1024 8 time-gated, single-photon avalanche diode line sensor is presented for time-resolved laser Raman spectroscopy and laser-induced breakdown spectroscopy. Two different chip geometries were implemented and characterized. A type-I sensor has a maximum photon detection efficiency of 0.3% and median dark count rate of 80 Hz at 3 V of excess bias. A type-II sensor offers a maximum photon dete...

متن کامل

A time-resolved 128128 SPAD camera for laser Raman spectroscopy

In this paper we present a time-gated single-photon avalanche diode (SPAD) array, the first of its kind to be integrated with a newly developed time-resolved laser Raman spectrometer. Time-resolved Raman spectra from various highly fluorescent minerals were successfully observed using our SPAD array; these spectra were obscured by an overwhelming fluorescence background when measured using a tr...

متن کامل

Fluorescence-suppressed time-resolved Raman spectroscopy of pharmaceuticals using complementary metal-oxide semiconductor (CMOS) single-photon avalanche diode (SPAD) detector

In this work, we utilize a short-wavelength, 532-nm picosecond pulsed laser coupled with a time-gated complementary metal-oxide semiconductor (CMOS) single-photon avalanche diode (SPAD) detector to acquire Raman spectra of several drugs of interest. With this approach, we are able to reveal previously unseen Raman features and suppress the fluorescence background of these drugs. Compared to tra...

متن کامل

Electrical μ-Lens Synthesis Using Dual-Junction Single-Photon Avalanche Diode

This work presents a dual-junction, single-photon avalanche diode (SPAD) with electrical μ-lens designed and simulated in 90 nm standard complementary metal oxide semiconductor (CMOS) technology. The evaluated structure can collect the photons impinging beneath the pixel guard ring, as well as the pixel active area. The fill factor of the SPAD increases from 12.5% to 42% in comparison with simi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics letters

دوره 36 18  شماره 

صفحات  -

تاریخ انتشار 2011